

The iCity Ontology and Supporting Visualizations

How do we understand integrated transportation and urban systems? An ontology approach with visualization tools.

- Dr. Mark Fox, University of Toronto msf@mie.utoronto.ca
- Dr. Megan Katsumi, University of Toronto katsumi@mie.utoronto.ca
- Dr. Sara Diamond, OCAD University sdiamond@ocadu.ca
- Dr. Ajaz Hussain, OCAD University ahussain@ocadu.ca

Transportation and urban systems: a morass of data . . .

- Sensors, studies, simulations, ...
- Households, transportation networks, vehicles, trips, ...

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

#CASCON2018

. . .

Challenge: semantic interoperability

Ability of computer systems to exchange data with unambiguous, shared meaning.

data federation across information systems.

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

A requirement for machine reasoning, knowledge discovery, and

The independence fallacy

- Shared attribute(s) identified and used for merging
- Other attributes are assumed to be independent of one-another This is often an oversimplific

ration			Dataset 1								
	ation			attr-1							
				attr-2							
				attr-3							
1											
	Dataset 2	attr-11	attr-12	attr-id	attr-7	attr-6	attr-5	Da			
				attr-8							
				attr-9							
				attr-10							
				Dataset 3							

Semantic Interoperability

311

ID		Creation Date			S	Service Request Name				
TO_Request1		01-02-201		10:35:03	Γ	Missing/[Damaged Signs			
ID	Divisio	on	S	ection		Service Request	Name	Problem Code		
TO_Requ est1	Transp Service	ortation es	T &	MC – Signs Markings	5	Missing/ ged Sign	Dama s	SAM-01		
ID	Date	•	A	gency		Complai Type	nt	Descriptor		
NYC- Request1	4/30/2 12:00:	2013 00AM	D	OT		Street Sig Damaged	gn — d	Stop		

New York

Source of the problem

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Solution: an ontology for urban informatics

ontology.

Addressing the challenge of semantic interoperability with a formal representation of transportation and urban systems: an

What is an ontology?

- (More than) a reference model for the domain. An ontology answers the questions:
 - What are the core concepts and properties of the domain (transportation and urban systems)?
 - What are the key distinctions?
- A precise, reusable, formal (written in a logical language) representation that supports:
 - Integration
 - Automated deduction

The ontology approach

Micro-Theory

- •Axioms/Rules
- Deduction answering questions

Definitions and Constraints

- Class Definitions (in Logic)
- Automated classification

relation or from any point of view. Definition [defi'n signification of a w essential to the cor an explanation of

- Knowledge Graph
- Classes and Properties • Taxonomy and Inheritance

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Example knowledge graph

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

ork1	network2	
	veh1234 rdfs:type Vehicle.	
	veh2536 rdfs:type Vehicle.	
sTo	veh1402 rdfs:type Vehicle.	
	network1 rdfs:type RoadSystem.	
231	network2 rdfs:type TransitSystem.	6
204	•••	0
	veh1234 accessTo network1.	
	veh1234 accessTo network2.	
IS	veh1234 accessTo network1.	
	•••	
	veh1234 ownedBy ttc.	
;	veh1234 ownedBy ctc.	th
	veh1234 ownedBy johnsmith.	
	•••	asAddress
l		

. . .

Example definitions and constraints

Vehicle

∃ accessTo.RoadSystem

TransitVehicle:

TransitVehicle ☐ ∃accessTo.TransitSystem TransitVehicle $\sqsubseteq \neg$ (HouseholdVehicle)

HouseholdVehicle:

HouseholdVechicle ☐ HownedBy.Person

HouseholdVehicle $\sqsubseteq \neg$ (TransitVehicle)z

Automatic classification of instances

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Implementation: how does it work?

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Transit Agency Vehicle Location Feed									
Vehicle_I D	Route	long		at		Time	Vehicle		
Veh1234	501	43.72053	3137 -	79.522	223983	01-Se 05:20:	p-2017 Garrier		
•••							Venicie		
							•••		
Freight Ag	ency Flee	et Record	S				,		
Carrier	locatio	on	Driver		recorded				
Veh1402	44.720 76.522)53137, - 223983	Al-cooj	ber	01-Sep-20	017			
•••									
14									

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

The iCity Ontology

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Visualization the iCity Ontology

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

Complex role-relation **association** between

multiple *concepts* with multiple *attributes*

chema S

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:j.0="urn:ocadu.ca/"> <rdfs:Class rdf:about="urn:ocadu.ca/Person"/> <rdfs:Class rdf:about="urn:ocadu.ca/Book"/> <rdf:Description rdf:about="urn:ocadu.ca/name"> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:RDF>

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

SEMANTIC GRAPHS

Network Graph

An effective way to represent the **complex**

<u>dynamism</u> of Semantic Knowledge Base

Structure of the graph can only be understandable, if it is in certain readable layout Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

DESIGN CHALLENGE

Research Theme

- > To understand the Highly **Complex**, **Dynamic** and **Scalable** *iCity Ontology*, there's an essential need to develop a **visual framework** supporting an aesthetically appealing graph layout
- > Visual Interaction and exploration of *iCity Ontology* to understand the **semantics** behind complex role-relation associations in the form of **knowledge network graph**

Graph Drawing Layout

Scalability & Performance

19

A visualization technique is needed, to **visualize** *iCity* ontology complex structure in directed network graphs

PROPOSED METHODOLOGY (1/2)

Native support of <u>Multi-Layered</u>, <u>Multi-Clustered</u>, **Power-Law** based **improved** force-directed graph drawing layout

 \succ UoT Researchers developing *iCity* Ontology in Protégé (Ontology Editor) and can **<u>natively</u>** visualize current ontology through *NavigOWL* plug-in

PROPOSED METHODOLOGY (2/2)

WebVOWL: Web-based Visualization of Ontologies

- > Open-Source tool for *interactive* visualization of Ontologies, with native implementation of **Force-Directed** graph layout
- > UoT Researchers using WebVOWL tool for visualizing the initial *iCity* **Ontology Models**, by leveraging the native force-directed graph layout

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

SHOWCASE: Power-Law based Graph Drawing Layout

70,000 Triples

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

100,000 Triples

PRELIMINARY RESULTS - NavigOWL (1/2)

In-Depth Visual Analysis of *iCity Transportation System* Ontology

PRELIMINARY RESULTS - WebVOWL (2/2)

In-Depth Visual Analysis of *iCity Organization* Ontology

FINAL THOUGHTS

VISUAL INTERFACE

Initial **Visual Interface** for **exploration** and **interaction** of *iCity ontology* for better understanding the **<u>dynamism</u>** and **<u>complexity</u>** by leveraging *NavigOWL graph Layout*

WEB INTERFACE

Proceeding with web-based interface of WebVOWL with integrated **improved graph layout** for online **accessibility** and **usability** for other *iCity* groups and stake-holders

••

ENRICHMENTS

Expressive representation of *micro-theory*, *axioms/roles* with support of **Visual Filters** and **Adaptive <u>View</u>** to display "*Significant*" sub-graph(s)

QUERY INTERFACE

Visualization of **Query Results** on *iCity Ontology* with **embedded view** in other *iCity Dashboards* for **reusability** and **extendibility**

Think: Cognitive Computing, Big Data, Cloud, Security and Privacy

UNIVERSITY OF

