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1 Abstract 
 

 

 

 

 

 

Big Data visualization has the potential to transform transportation and land use planning. The 

400-series highway network in the Greater Toronto and Hamilton Area is a vital piece of 

infrastructure and a better understanding of its use will go a long way in informing traveller 

information systems and emergency responders. This thesis is divided into two parts. The first part 

takes speed measurements during the month of July 2017 from loop detectors embedded in the 

highway bed are analyzed to identify bottlenecks occurrences. The Travel Time Index, a ratio of 

actual travel time over a threshold travel time is used to determine the existence and severity of 

congestion conditions. The second part takes these values and visualizes them via an R Shiny-

based interactive web application. Tens of thousands of data points are translated into this simple 

medium where users can see how traffic conditions evolve over the course of a 24-hour period for 

each day in the month of July 2017. The results are consistent with previous observations on traffic 

behaviour on this highway network. Work from here lays the foundation for a more comprehensive 

traffic information system being developed by the Intelligent Transportation System of Systems 

group at the University of Toronto.  
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4 Introduction 

The nature of mobility, the means and patterns of transportation, is shifting toward a consumer-

based service that will require accurate real-time information on traffic conditions for various 

modes of travel (e.g. car, cycling, subway, etc.). Information traveler systems today rely on often 

outdated, incomplete and unreliable sources of information. Google Maps, which comes closest to 

providing comprehensive real-time travel information for different modes relies on spotty, random 

samples of GPS devices. Its reliability depends on availability of GPS-enabled devices and may 

result in outdated information on traffic and road conditions. The best way to get reliable real-time 

information on traffic conditions is directly from sensors placed in the infrastructure itself, e.g. 

loop detectors, Bluetooth detectors. These devices measure speed and volume information along 

a corridor and, with some Big Data processing, can be a part of an Intelligent Transportation 

System of Systems [1]. This report starts with a literature review to build a picture of the study 

area and data processing techniques relevant to the thesis topic. It then describes the work for this 

thesis divided into 2 parts. The first part examines loop detector speed and volume data and 

performs bottleneck analysis on highway segments in the Greater Toronto Area to determine the 

Travel Time Index, an indicator of congestion, of each segment over a one-month period, July 

2017. The second part describes the development of an interactive web application based on R 

Shiny Package that visualizes the TTI values on a map of the highway network. Future work is 

required to further clean up the data and tweak the visuals using advanced JavaScript-based 

graphics. The work here forms one part of a bigger academic endeavour with the Intelligent 

Transportation System of Systems group at the University of Toronto Department of 

Transportation. 

 

5 Literature Review 

As mentioned above, travel information comes in the form of travel apps for flights, transit, and 

driving. Google Maps is perhaps the most widely used source of basic travel information, making 

use of crowd-sourced GPS information to determine traffic conditions, travel times, and multiple 

alternatives. The next phase of the evolutions of these systems is to gather raw data from sensors 

in the very infrastructure used by commuters and translate it into information understandable to 
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users. The information would be tailored for many types of users ranging from commuters trying 

to get from point A to point B using real-time travel information, to municipal officials, 

infrastructure operators, and researchers interested in past data to study travel behavior in various 

conditions (e.g. shockwave effects of bottlenecks on a highway during various weather conditions, 

or the effects of construction scheduling on congestion patterns, etc.). The following is a literature 

review of past and current research related to bringing Big Data traveler information into its next 

phase. They cover the full spectrum of work, from the back-end data collection and analysis, to 

the front-end visualization and user-friendly interactivity. 

 

5.1 Toward a Seamlessly Integrated Cyber-Physical Intelligent Transportation System 

of Systems 

This conference paper acknowledges work done in communicating travel information and in smart 

transportation systems such as smart parking applications and digital trail maps for cyclists, but 

identifies a gap in bringing them together and integrating them all into one place [2]. Currently, 

they are all operating independently and isolated from each other. The authors outline a framework, 

referred to as an Intelligent Transportation System of Systems, as a more efficient and informative 

source of information on transportation infrastructure throughout entire regions. This framework’s 

purpose would go beyond the function as an Advanced Traveller Information System. The authors 

outline three pillars of this framework. 

The first, called Ontological Semantic Knowledge Representation, proposes the necessity of 

ensuring smooth interoperability between the ‘cyber-physical’ components such as sensors, their 

software components. It also proposes that they be able to communicate with other components 

[1]. The idea is to design a platform that takes in data from various sensors (e.g. cameras, loop 

detectors, Bluetooth detectors, crowd-source, etc.) and have them interact within one ‘System of 

Systems’ and automatically coordinate to create a holistic picture of the transportation 

infrastructure that users could understand. The authors describe the four components of the 

ontology for this system of systems in Figure 1. 
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Figure 1: Four components of ITSoS Ontology [2] 

The second pillar, called Integrated Service Planning, makes use of the first and calls for 

combining information from various sources and types of sensors to get a comprehensive set of 

useful information [1]. The authors suggest a hierarchy involving small, specific services such as 

pre-trip information and route guidance and navigation. These services are in turn broken down 

into a data collection component and data analysis mechanism. The platform would draw on these 

services in a way that is unique to each user’s request, e.g. for trip planning. 

The third pillar, called Integrated Service Execution, which the authors refer to as the ‘management 

infrastructure’, would encompass data processing and user interface execution in a way that meets 

the communications standard of the platform (real-time information vs past conditions for research 

purposes) [1]. This part would keep track of and present the results of independently-operating 

sources of transportation information in a user-friendly context through what the authors refer to 

as a ‘messaging infrastructure’, e.g. combining travel times on a roadway and visibility levels [2]. 

Figure 2 illustrates the theoretical structure of this pillar. 
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Figure 2: Theoretical structure of the ISE [2] 

This paper presents steps taken to implement a prototype that includes a trip-planning component, 

a software platform that provides real-time road conditions (ONE-ITS), and a platform that 

provides real-time transit bus information (NextBus). With the ontological format, the prototype 

can present the user with relevant information from each service insomuch as they rely on to each 

other and the connections between their data sources on the transportation infrastructure [2]. 

Together, this makes up an Advance Traveller Information System depicted in Figure 3. 

 

Figure 3: ATIS task network [2] 

The paper concludes by noting future work to be done that includes combining multiple sources 

of information from various types of sensors, beyond GPS [2]. The design project discussed in this 

report expands on the work done for this paper by designing a service for highway bottlenecks 

using data from loop detectors. 
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5.2 Multi-Sensor Data Fusion for Traffic Speed and Travel Time Estimation 

On the back-end of the analysis required for proper visualization of congestion is discussed in this 

paper by Bachmann where he studies the fusion of data collected from multiple detector 

technologies [3]. He compares estimation techniques and evaluates them on their ability to 

accurately measure speed data using Bluetooth-enabled devices, loop detectors, and GPS. There 

is growing interest in using wireless technologies to gather information and communicate between 

devices. Bachmann sets out to compare the data collection performance of both devices and 

examines ways the information they gather could be fused together. He evaluates the effectiveness 

by comparing to microsimulation results and GPS-enabled traffic information that is widely 

available and considered to be the main standard [3]. 

The advantage of data fusion lies in the ability to use one type of sensor to make up for the 

shortcomings of another type of sensor measuring the same phenomenon, and vice versa. It also 

increases the resilience of the traffic information system. Having multiple sources measuring the 

same phenomenon increases the accuracy of the measurement by providing more data points to 

work with. Also, fewer data points and data processing power is needed, and therefore the speed 

of operation increases with multiple sources than when relying on merely one type of sensor [3]. 

The data fusion techniques that Bachmann outlines are: Simple Convex Combination, Bar-

Shalom/Campo Combination, Measurement Fusion, Single-Constraint-At-Time (SCAAT) 

Kalman Filter, Ordered Weighted Averaging (OWA), Fuzzy Integrals, Artificial Neural Networks, 

Fusion Architectures, and Measures of Effectiveness. 

Bachmann included a real-world case study using data collected from Bluetooth detectors and loop 

detectors on a stretch of Highway 400. He created a virtual version of that stretch in Paramics for 

microsimulation to cross-validate speed measurements. Bachmann found that loop detectors, 

although they measure speeds of all passing vehicles, are the least accurate due to technological 

constraints, but Bluetooth detectors, although reliant on an adequate sample size, is the most 

accurate. He also found that most of the fusion techniques improve the reliability and accuracy of 

speed information, especially those that give a larger weight to Bluetooth data. Notably, a fusion 

architecture that has a largest amount of raw data from each sensor type would give the most 

accurate measurements as the relationships between various types of sensors would be well 

understood [3]. 
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This thesis design project designs and builds a service that utilizes all the raw data from all the 

loop detectors in the Greater Toronto Area so that future work that utilizes multiple sensor types 

and data fusion techniques outlined here will be able to get a higher quality reading on traffic 

conditions. 

 

5.3 Integrated Congestion Evaluation and Quantification 

Scott Johnson sets out to describe a methodology to quantify congestion [4]. The threshold for 

congestion used, called the Toronto Congestion Index, is like a Travel Time Index where a value 

of 2 indicates travel times that are twice as long as normal conditions. The methodology, 

programmed into the Integrated Congestion Evaluation and Quantification (ICEQ), indicates the 

TCI for PM 2-hour period and the number of users who experience a certain TCI value. The goal 

of Johnson’s thesis is to combine the use of Intelligent Transportation Systems for data collection 

with the development of a congestion index that gives information not only about traffic 

conditions, but also how those conditions affect specific trips. For example, this index would 

indicate the effect of road incidents on transit riders [4].  

Data collected from several highway loop detectors are analyzed and the value of the congestion 

ratio (actual travel time to reference travel time) distribution determines the value of the Toronto 

Congestion Index: “The congestion index is the congestion ratio with a set probability of being 

exceeded based on the cumulative distribution function.” Two types of data are used to determine 

this index: Traffic Management System sources such as highway loop detectors, and GPS data. 

Johnson includes in his paper an aspect of data visualization useful for research purposes. This 

visualization that includes graphs of speed readings and fundamental diagrams illustrated the 

extent of data volatility that required refinement and smoothing techniques. The paper discusses 

the effectiveness of using various statistical analysis tools to test for viable data such as testing for 

normality, lognormality, and the use of 3-D space-time-speed diagrams. The data-cleaning 

involved comparing actual speeds to rolling averages or interval averages [4]. Figure 4 shows the 

volatile nature of loop detector data and how it can be smoothed by averaging over 3-minute 

intervals. 
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Figure 4: Data smoothing study of loop detector data [4] 

Johnson found the average absolute error from both using rolling averages and interval averages 

to be around 8 km/h for one loop detector location. He chooses to calculate the Congestion Ratio 

based on the interval averages method since, to make it useful for highway operators and users, it 

must not be affected by data points in the past [4]. Figure 5 shows the findings of calculating the 

congestion ratio at one location over the PM peak period. The volatility during the 4pm to 6pm 

period is related to the issue of higher volatility in the loop detector data at lower speed 

measurements, a point that is particularly relevant to this design thesis. 

 

Figure 5: Congestion ratio plot using interval averages [4] 

The TMS-based CR gives information on travel performance that is specific to one location. 

Johnson used GPS data to find the congestion performance of entire trips based on their origin-

destination patterns. This part of the study used microsimulation, to determine the congestion ratio 

based on link performance values from Paramics simulation software. The OD inputs to the 
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simulation are the OD patterns determined from the GPS data. The use of GPS data permits the 

study of congestion levels for transit users separately from road users. 

To find the congestion index of entire regions, in this case of Toronto, Johnson made use of the 

Travel Time Index aggregated over multiple locations: 

𝐶𝑅 =
60/𝑉

60/𝑉𝑅𝑒𝑓
 

Where V is speed in km/h and VRef is chosen as the speed at capacity, or maximum flow rate as 

illustrated below: 

 

Figure 6: Speed-flow fundamental diagram used to determine speed at capacity used for the reference speed [4] 

Finding speed at a capacity requires data on both speeds and volumes, which is provided by loop 

detectors. The issue here is that this is only available for freeway segments. GPS data does not 

provide information on volumes and flow rates. Since the goal of this paper is to find the 

congestion index for Toronto, the reference volume is the free flow speed. A congestion index 

using the free flow speed will show a value of 1.33 that corresponds with a congestion index using 

speed at capacity with a value of 1 [4]. For this reason, Johnson concludes that an adjustment of 

0.33 will be required to get the actual additional travel times at perceived congestion levels. Using 

a free flow speed of 110 km/h on freeways based on available speed data was used as the threshold. 

Figure 7 shows a speed vs CR graph illustrating the relationship between speeds and corresponding 

congestion ratio: 
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Figure 7: Speed vs Congestion Ratio using free-flow speed as threshold [4] 

The congestion ratio is more sensitive at lower speeds, which could be problematic when the speed 

data is very noisy as is the case with loop detector data (see also Figure 8). It would be very difficult 

to get an accurate reading of congestion levels precisely at the speed ranges where this 

measurement would matter to travellers: 

 

Figure 8: Rush hour speeds give rise to volatile congestion ratios [4] 

To help with this, any speed data below 10 km/h has been ignored since it would imply near-

infinite travel time, which is not the case indicated by GPS-based origin-destination trips [4]. The 

resolution of this issue for Johnson is to aggregate the CR’s over the entire city for the TCI, 

reducing noise associated with these low speeds. The congestion ratios were aggregated for the 
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4pm to 6pm peak period averaged over several days’ worth of data. Specifically, three segments 

that each represent “limited, moderate, and severe” congestion levels had their congestion ratios 

averaged over 5 workdays [4]. Below in Figure 9 is the cumulative distribution function for each 

segment: 

 

Figure 9: CDF of congestion ratios of 3 freeway segments [4] 

The 80th percentile TCI value has been chosen to represent the congestion ratio of those locations. 

These individual segments’ CRs are then applied to OD patterns based on the above Paramics 

simulation and GPS data. The Toronto Congestion Index is determined thusly [4]: 

 

The traffic simulation determines which paths are taken and therefore the value of N (volume) for 

each segment with a CR value. This weighted average over OD pairs is the Toronto Congestion 

Index. This paper also describes the software programs developed and designed to evaluate the 

TCI, called the Intelligent Congestion Evaluation and Quantification based on Visual Basic for 

Applications Excel [4]. 

Johnson also extends the analysis by using the TCI to determine Economic Cost of Congestion. 

For this the Economic Congestion Ratio of the cost of congestion to the cost of improvement is 
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used to determine the potential economic improvements that would result from an improvement 

in travel time [4]. 

The methods used by Scott Johnson to collect, process, and analyze speed data to find a Travel 

Time Index is identical to the one used for this thesis. The challenges with noise are the same since 

both use the same data source: loop detectors. What differs is that this thesis relies on local TTI 

values with no spatial aggregation to smooth the volatility in the data.  

 

5.4 Automatic Imputation of Missing Highway Traffic Volume Data 

This paper deals directly with the issue of incomplete data, such as speeds and volumes 

measurement from loop detectors [5]. The authors developed a method to fill in the missing data 

points that result from system/equipment failure. The sensors studied, which are loop detectors 

placed along the 400-series highway in the GTA, were divided into 5 groups based on the 

percentage of missing data points collected over all of 2016. On average, 31.5% of data points 

were missing. The length of data gaps ranged from a couple of minutes to months. The sensors 

were divided into 8 groups based on the gap duration. The sensors with the shorter-duration gaps 

tend to be the same as the sensors with fewer missing data. The paper focused on imputing values 

for data gaps less than a week long. The classification is shown in Figure 10: 

 

Figure 10: Classification of sensors based on % missing data and length of data gaps [5] 

To fill these gaps, the existing data was aggregated into 15-minute intervals to minimize the 

noise as shown below in Figure 11: 
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Figure 11: Aggregation of volatile loop detection data into 15 min intervals [5] 

Univariate time series methods are used to calculate the missing values. The relevant formula is 

, 

where X is the time series, S represents the variation in the data over one day, T is the data trend, 

and R represents other irregularities. The method recommends that only regular weekdays be used. 

Two stationary series (where mean, variance, and others are constant over time), one calculating 

differences in data values 24 hours apart from each other and the second a week apart, use the 

ARIMA technique to smooth the variation (using moving averages), and find the imputed values 

for the missing data points [5]. The data from the real world, along with the imputed values, was 

compared to data from a simulation to test for accuracy. Three comparison methods, Mean 

Absolute Error, Mean Absolute Percent Error, and Root Mean Square Error, were used and found 

the imputed values, especially those during high-volume periods, nearly matched the simulated 

values [5]. 

This paper presents a possible method to be used to smooth the great variations found in the loop 

detector data for this thesis. Indeed, it presents a technique directly applicable to short gap 

durations that do exist in the data used for this thesis. 
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6 Bottleneck Analysis and Web Application Design 

There are two parts to this project each with one set of R code. The first part deals with performing 

bottleneck analysis using loop detector data. It has an R script that takes raw loop detector data as 

an input, processes it, and outputs daily TTI values, and records the GPS coordinate of the loop 

detectors analyzed. The TTI values files with the coordinates of the loop detector location, in the 

form of a .csv file, is used as input for the second R script. The second R code is the web application 

that utilizes the R Shiny package, app.R, which reads from the list of TTI files, extracts the TTI 

values and the GPS coordinates of the associated loop detector locations and displays the 

information visually on a map with a time slider. 

 

6.1 Bottleneck analysis 

The R code for this analysis can be found in the Appendix. The speed and volume data for the 

month of July 2017 used here were recorded by loop detectors that are embedded in the road on 

the 400-series highway network. The loop detectors are just below the surface of the asphalt and 

can sense vehicles passing over them. They record speed and volumes. 

The first part of doing a bottleneck analysis is to determine a threshold speed below which traffic 

conditions are those of congestion and above which traffic conditions are comfortable. The 

threshold selected is also referred to as the Maximum Throughput Speed (MTS), which is the 

average speed of vehicles at capacity, or at the maximum flow rate of vehicles per hour per lane. 

The reasoning follows that of Scott Johnson’s in that it is closer to the threshold at which drivers 

perceive congestion. According to the empirically-derived formula from the Highway Capacity 

Manual, this value depends on the relationship between free flow speed, the highway 

characteristics (lane widths, presence of medians, etc..) and the corresponding value of flow rate 

at capacity, both of which could be determined theoretically using the empirical model shown in 

Figure 12: Highway capacity manual guide to determine speed at capacity; relevant values underlined: 
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Figure 12: Highway capacity manual guide to determine speed at capacity; relevant values underlined [6] 

𝑆 = 𝐹𝐹𝑆 − [
1

26
(23 ∗ 𝐹𝐹𝑆 − 1800) (

𝑣𝑝 + 15 ∗ 𝐹𝐹𝑆 − 3100

20 ∗ 𝐹𝐹𝑆 − 1300
)

2.6

] 

Using the formula above for MTS (S) [6], a free-flow speed (FFS) of 115 km/h (the average of 

recorded speeds during overnight periods), and a capacity (vp) of 2375 pc/h/ln, MTS calculations 

for a handful of segments for Highway 404 and Highway 401 yielded values hovering around 85 

km/h. This is the value used as the threshold for all data analyzed. To confirm this threshold value 

the speed and volume data from 5 loop detectors, randomly selected, (410DW1040DSS, 

401DW0030DES, 400DN0010DSE, 401DE0350DWE, and 404DN0060DNS) were used to 

generate the Speed-Flow fundamental diagram shown in Figure 13 where the 85th percentile speed 

is 120 km/h and the 85th percentile flow rate is 1780 veh/h/ln. The resulting MTS is around the 85 

km/h mark as was found using the empirically-derived formula above. 



15 | P a g e  
 

 

Figure 13: Speed Flow diagram from loop detector data at 5 locations 

 

Loop detector speed data from Highway 404, Highway 401, Highway 410, Highway 409, 

QEW/Highway 403, with around 300 highway segments have been evaluated so far for entire 

month of July. One highway segment is represented by one loop detector location. The indicator 

for congestion is the Travel Time Index, determined for each segment independently as: 

𝑇𝑇𝐼 =  

1
𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝑘𝑚/ℎ

1
85 𝑘𝑚/ℎ

 

The denominator in this formula is the inverse of the MTS. The numerator is found in the speed 

profile. Alternatively, it is the ratio between the actual travel time and travel time at the Maximum 

Throughput Speed. The higher the index, the worse the congestion, i.e. an index of 2 means that 

the drive is taking you twice as long as if the traffic were moving at 85 km/h. 

The calculation procedure starts with reading the .csv file of raw loop detector data, a sample of 

which is pictured in Figure 14. The data is read, cleaned, and analyzed for each day separately. As 

mentioned in the literature review, loop detectors are unreliable devices in the way that they 

sometimes record faulty data or turn off for anywhere from a minute to several days. Any day-

long loop detector data that is missing over half the values is discarded from analysis. For all 
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others, a moving-average data imputation technique, in the form of the function na.ma() from the 

ImputeTS R package, is used to interpolate the missing values. 

 

 

Figure 14: Snippet of speed data from a loop detector; coordinates in top left; speed data recorded every 20 seconds; each column 

is one 24-hour period 

 

The cleaned data is then averaged over 2-minute intervals. The 2-minute interval length is a good 

balance between reducing the noisy data and the need for short intervals to animate the evolution 

of congestion bottlenecks for the visualization part of this thesis. The speed value for each 2-min 

interval is used to calculate the Travel Time Index of that 2-minute interval, i.e. used in the 

numerator of the TTI formula above. An example of the steps of this analysis is illustrated in Figure 

15 with one segment’s speed profile and Travel Time Index. The left side shows the location of 

that detector, northbound side of Highway 404, north of Sheppard Ave. The graph on the top right 

is the speed profile for July 5 for that location where the 2-min speed averages are plotted. The red 

curve is the result of Loess curve fitting function in R and the blue line is the 85 km/h threshold 

speed. The graph directly below is the TTI profile of the same location on the same day. As can 

be seen, the periods of time where the speed measurements dip below the threshold correspond 

with the morning and evening rush hours where the TTI values are above 1.   
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Figure 15: NB of Hwy 404 near Fairview Mall; green square is loop detector location; speed profile top right; travel time index 

bottom right 

The TTI is inversely proportional to speed values, meaning that traffic speed below the threshold 

have a TTI value of more than 1. The slowest speeds correspond to the highest TTI values as the 

formula implies. There is a total of 720 data points for the one-day period. This result, along with 

the coordinates for the corresponding loop detector written into a .csv file, one file per day 

containing all the loop detector locations with their TTI values. A snippet of the output for July 10 

is shown in Figure 16. TTI values above one during the early hours of the morning are a result of 

either an incident at that time or a malfunctioning loop detector that records slower speeds. Further 

statistical analysis is required with at least a year’s worth of data to confidently eliminate these 

points as outliers from the analysis. This output becomes the input to the second part of this thesis. 
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Figure 16: Snippet of output for July 10; longitudes of loop detectors in column 'x'; latitudes in column 'y'; one 2-min interval per 

column 

 

6.2 Interactive Web Application Development 

The R code for this application can be found in the Appendix (app.R). It uses the R Shiny package 

that contains the code for both the User Interface and Server functions (front-end and back-end). 

It is accompanied by a directory, “TTI”, containing each loop detector’s TTI file of 2-minute 

averages and ArcGIS-generated shapefiles of hourly TTI averages for each day of July. The 

ArcGIS-generated shapefiles were created using the following procedure: 

1. The 2-minute TTI averages were grouped into hourly TTI averages for each detector 

2. Loop detectors are divided by highway and direction, e.g. Highway 404 northbound, QEW 

EB, etc. 

3. Each group’s hourly TTI averages csv file is imported into ArcGIS as “Events.” Each Event 

layer contains one day’s worth of TTI values (hourly average) for one highway section 

4. Each group’s loop detector dots are manually connected by a Polyline that follows the 

highway direction 

5. A Buffer is generated of that line that is 40 metres wide, on the right side 
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6. The TTI values for each hourly interval undergoes spatial interpolation using Bayesian 

Kriging Interpolation tool, the only option in ArcGIS that generates shapefiles that are 

easily read by the R shiny package 

7. The resulting variogram is “Clipped” using the Clip tool and the Buffer as the “Clipper” 

so that the spatial interpolation is restricted to the geographical space of the highway 

8. This procedure is repeated for every hour for all highway sections for the day, over the 31 

days of July 

9. All the resulting “Clipped” shapefiles are put together to end up with one shapefile 

containing the hourly average TTI for the entire network. 24 of these are generated for each 

day 

10. The shapefiles are placed in the “TTI” file to be read by the R Shiny script and displayed 

visually 

The Python script that automates this process using the arcpy library, created by McMaster 

University PhD student Anastassios Dardas is found in the Appendix along with the R script that 

transforms the .csv input file of TTI values (so far hourly averages) into point shapefiles ( to 

replicate Step 2 in the automation process). This point shapefile is the input to the Python script. 

The interactive web application is currently available to the public via the following web address: 

http://itsos.ca/Traffic_Bottleneck.php on the Intelligent Transportation System of Systems group’s 

website. The application has two panels. The top panel has a map that displays the Travel Time 

Index at each loop detector location during the month of July 2017 for a 2-minute interval. The 

map is accompanied by a legend to explain the colour-coding pattern: green for travel speeds below 

threshold, yellow for mild congestion (TTI from 1 to 1.5) of up to 50% longer travel times, orange 

for moderate congestion (TTI from 1.5 to 2) of 50%-100% longer travel time, and red for severe 

congestion (TTI > 2). Below the map is a 24-hour time slider where each tick represents a 2-minute 

interval. The user can select the 2-minute interval TTI values to be displayed by clicking anywhere 

on the slider. The user can also press the “Play” button on the right to activate the animation. This 

animation shows the evolution of traffic conditions on the network and can be combined with other 

information such as, for example, evolving weather conditions to visualize the relationship 

between traffic congestion and weather. This information could prove useful to emergency 

services to help determine the best routes to take by predicting whether traffic conditions may 

http://itsos.ca/Traffic_Bottleneck.php
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quickly deteriorate in the route ahead as a storm approaches. This would be the subject of future 

work. Below the time slider is a drop-down menu the user can use to select the date to display. A 

screenshot can be found in Figure 17 for the latest version: 

 

Figure 17: Screenshot of the top panel of the web application showing 2-minute TTI averages 

This panel displays the base map CartoDB.DarkMatter layer available using Leaflet maps. The 

user can zoom in and out as they please. The second panel, below the first, displays the ArcGIS-

generated spatially interpolated TTI hourly averages values along the highway network. Again, 

the map has similar functions as the one for the first panel (24-h time slider with animation 

capability, but with 24 ticks; drop-down menu to select the date; colour-coding pattern). A 

screenshot is shown in Figure 18 below. The base map displayed is Esri.WorldGrayCanvas layer 

available for Leaflet maps. 
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Figure 18: Screenshot of second panel showing ArcGIS-generated visualization of spatially interpolated hourly TTI averages 

 

6.2.1 Web Application Documentation Outline 

To be useful to the user, this application will be accompanied by documentation that will be easily 

accessible through a button that will be added soon to the application. The documentation will 

have two parts. The first part will mirror the section above that explains each part of the app. This 

part will also have elements of the Bottleneck Analysis section to explain the origin of the 

information being displayed. The second part will be akin to a manual, a how-to series of steps 

with pictures or video to show the user how to interpret the visualized data. An outline is shown 

below: 

• Purpose of the application: Big Data visualization, information directly from infrastructure 

• Data source and data analysis process:  

o Loop detectors and their limitations; July 2017 displayed 

o Data cleaning techniques applied 

o Bottleneck analysis process with the R script for reference 

• Description of the application 

• How-to series of steps 

o Panning to see other parts of the map 

o Zooming in and out 

o Reading and selecting time periods 
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o Selecting days of July to display 

o Animation process 

o Interpreting Panel 1: best for studying bottleneck evolution 

o Interpreting Panel 2: best for studying recurrent and non-recurrent bottlenecks 

Most of the information for the documentation already exists in this thesis and will be rearranged 

in the above order. 

 

7 Results and Validation 

Besides the validation of the empirically-derived formula for speed at capacity from the Highway 

Capacity Manual, the highway segments of recurrent bottlenecks, that are most visible with the 

animation of the second panel, confirm observations done elsewhere. The CAA released a report 

done by CPCS Transcom Limited [7] that analyzed traffic data of highways all over Canada to 

determine which had the highest delays. The top two locations according to this study were: 

Highway 401 between Highway 427 and Yonge St, and Highway 404/DVP between Don Mills 

and Finch Ave. For this thesis, and as visualized in the web application, those two locations are 

also the ones where the highest TTI’s (in the red) are displayed the most. 

Also, higher (yellow, red) TTI values appear during AM and PM rush hour periods throughout the 

network, but particularly in dense urban areas such as the 401 in Toronto and the QEW in 

Mississauga, Oakville, and Burlington especially on weekdays. Intuitively, this follows the typical 

travel congestion patterns. Weekends tend to record more “green” travel conditions (no delay 

compared to travelling at 85 km/h) with mild congestion spots coalescing around major highway 

interchanges, particularly 401 and 400, 401 and 404, and 401 and Yonge St. Interestingly, the 

north end of Highway 400 tends to have more severe congestion than the south end in off-peak 

hours and evening peak period alike for at least 12 of the weekdays in July. Further study is 

required to determine whether the 407 traffic plays a role or the loop detectors at the north end are 

malfunctioning by recording lower speeds than the actual speeds. 
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8 Future Work 

• Data cleaning. This part will be a major next step as the moving average imputation only 

works on data sets that have at least 60% viable data, or maximum of 40% of all data points 

are missing. Here, the imputation techniques from the paper discussed in the Literature 

Review section will be used as a reference for methodology. A greater amount of data 

would be needed to impute the missing chunks of data from days that have been discarded 

in this thesis. About 30%-40% of all the loop detector data for this thesis has been discarded 

for missing too many values. One method could be: 

o First, do moving average imputation for as many valid data as possible, as done for 

this thesis 

o Then, for the missing days, perform a Principal Component Analysis imputation 

for each loop detector location for: 

▪ All non-holiday weekdays 

▪ Holidays 

▪ Saturdays 

▪ Sundays 

Where each 20s the period is analyzed individually across each type listed above. 

This method should follow the one used by Ke et. al. when using loop detector data 

in Hong Kong to predict real-time likelihood of accidents [8]. For example, for non-

holiday weekdays, for each 20s period, each weekday’s value at that period is 

analyzed for its influence in the variation of Principal Component 1. Then, each 

measurement’s PC1 value is obtained by multiplying the influence factor by its 

recorded speed value. A probabilistic relationship between this PC1 value and the 

original speed measurement should be determined. Then the imputed speed value 

should be the one corresponding with the expected PC1-to speed relationship. Data 

from at least two weeks prior to and two weeks after July would be needed to get 

accurate values, especially for Saturdays and Sundays. 

• Expansion: getting loop detector information from the City of Toronto for the 

Gardener/DVP would complete the network and provide more depth in understanding 

whether and how congestion levels evolve in areas with different land uses. 
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• Replacing the 2-minute TTI averages “dot” visuals with the ArcGIS-equivalent, like the 

second panel. So far attempts to generate these maps have resulted in computation 

complexities that indicate 6-8 weeks of continuous processing. A more powerful computer 

is being sought. 

• Processing data beyond the month of July 2017. 

• Real-time data processing and visualization. This would require new back-end architecture 

currently in the works by the ITSoS group. 

• Cosmetic changes to fit the theme of the website that will include other services. This web 

service is part of a broader ITSoS framework to provide useful visualization for 

researchers. A JavaScript-based aesthetic is being developed by the ITSoS group. 

• Determining the extra travel time based on TTI. This will require manually dividing the 

highway network into 1000+ segments, each with a loop detector in the middle to obtain a 

corresponding distance value used to then calculate time delay. 

 

9 Conclusion 

Big Data visualization can be a powerful tool to inform public policy direction and help planners 

see the system they deal with differently. This thesis is the beginning of a process that will add 

depth in terms of the type of analysis performed and breadth in terms of amount of information to 

be analyzed. Thus far, one can infer congestion patterns, recurrent and non-recurrent, based solely 

on visual observation through the application designed here. This work is but a sample of the 

powerful simplification of the understanding of a Big Data set that comes with visualization. The 

work done here lays the foundation for a more sophisticated web-service-based traffic congestion 

visualization application.  
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11 Appendix 
 

The lines beginning with ‘#’ are comments that describe the code and do not participate in its 

functioning. The Bottleneck Analysis code is flexible enough to process two or more loop detectors 

that are in one location, to take their averages to produce the speed profile. 

 

11.1 R Code for Bottleneck Analysis 
 

# Bottleneck analysis, input raw loop detector data for July 2017, 

# output TTI 2-minute averages 

 

library(imputeTS) 

library(dplyr) 

 

 

 

for (July in 1:31){ 

   

# Set up the time format 

 

travel <- data.frame("time" = c(paste("7/",July,"/17 00:00",sep=""), 

                                paste("7/",July,"/17 23:58",sep="")), 

                     stringsAsFactors = F) %>% 

  mutate( 

    time = as.POSIXct(time, format = "%m/%d/%y %H:%M")) 

 

# Initiate objects in which to store final output with long and lat of loop detectors 

 

output <- data.frame(row.names=seq(as.POSIXct(paste("2017/7/",July," 00:00:00",sep="")), 

                         as.POSIXct(paste("2017/7/",July," 23:58:00",sep="")), 

                         "2 mins")) 

latitude <- vector(mode="character",length=0) 

longitude <- vector(mode="character",length=0) 

 

# Initialize the speed profile plot 

 par(mfrow = c(2,2)) 

  

# Read the data files of detectors - User Input 

 

##### 

files <- list.files(path="D:\\Thesis\\404\\404NB", full.names=T, recursive=FALSE) 

##### 

 

# Read each segment in sequential order, mirroring the geographic sequence 

  

for (folder in files){ 
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  par(mfrow = c(2,3)) 

  SegmentSP <- vector(mode="numeric",length=720) 

  minute <- vector(mode="character",length=720) 

  Baseline <- rep(85,720) 

  file=1 

  f <-list.files(path=folder, pattern="*.csv", full.names=T, recursive=FALSE) 

  Day <- matrix(nrow=length(f),ncol=720) 

 

# Read loop detector csv data file   

   

for (i in f) { 

  print(i) 

   detector = read.table(i, header=FALSE, sep=",", fill=TRUE, stringsAsFactor=FALSE) 

  time <- detector[,1] 

  if (grepl("/",detector[3,3]) == FALSE){ # Some faulty data files missing coordinates 

    next 

  } 

  coordinates <- unlist(strsplit(detector[3,3],"/")) 

  detector <- detector[-c(1,2,3,4,5),-c(1)] 

  day <- as.numeric(detector[,July]) 

  day[day == 0] <- NA 

  detector[,July] <- day 

   

  # Data Moving Average Imputation 

  detector[1,July]=100 # Speed at midnight should be free-flowing 

  if (class(try(na.ma(as.numeric(detector[,July])),silent=T)) == "try-error" ) 

    next 

  detector[,July] <- na.ma(as.numeric(detector[,July])) 

   

 # Average 24-hr data over 2 min for each file and store in a matrix 

 a=1 

 for(n in seq(from=1, to=length(detector[,July]), by=6)) { 

  Day[file,a] = mean(as.numeric(detector[n:(n+5),July]),na.rm=FALSE) 

  minute[a] <- substr(time[n+5],1,5) 

   a=a+1 

 } 

  

 # Check code by plotting speed profile 

 plot(1:length(Day[file,]),Day[file,], xaxt = 'n',xlab="",ylab="Speed (kph)",ylim=c(0,140)) 

 c = minute[seq(1, length(minute),100)] 

 axis(1, at=seq(1,length(minute),100), labels = c, las=2) 

 lines(1:length(Day[file,]),Baseline,col="blue",lwd=2)  

  

  file=file+1 

} 

 

   

# Compute the average over the segment 

Values = vector(mode="numeric",length=length(folder)) 

for (num in 1:length(SegmentSP)) { 

 Values = Day[,num] 



28 | P a g e  
 

 SegmentSP[num] = mean(Values) 

} 

 

# Plot speed profile 

 

x = 1:length(minute) 

y = SegmentSP 

 

plot(x,y, xaxt = 'n', xlab = '', ylab="Speed (kph)",ylim=c(0,140),main="Speed Profile") 

 

c = c(minute[seq(1, length(minute),180)],"24:00") 

axis(1, at=seq(1,(length(minute)+180),180), labels = c, las=2) 

lines(x,Baseline,col="blue",lwd=3) 

SP <- loess.smooth(x,y,span=0.01) 

lines(SP,col="red",lwd=3) 

 

# Moving average imputation 

 

if(is.na(mean(SegmentSP))) # Empty day, so skip 

  next 

   

 

# Travel time index 

 

TTI = vector(mode="numeric",length=720) 

 

# Calculate TTI using MTS of 85 km/h 

index = 0 

for (index in 1:length(SegmentSP)) {  

  if (SegmentSP[index] <= Baseline[index]){ 

  TTI[index] = (1/SegmentSP[index])/(1/85) 

  if (!is.finite(TTI[index])){ 

    TTI[index] = 0 

  } 

  } 

  else{ 

    TTI[index] = 0 

  } 

} 

 

# Check calculations by plotting TTI over 24h period 

 

plot(1:length(TTI), TTI,xaxt = 'n', xlab="", ylim=c(0.55,3), main="Travel Time Index") 

c = c(minute[seq(1, length(minute),180)],"24:00") 

axis(1, at=seq(1,(length(minute)+180),180), labels = c, las=2) 

 

# Add to final output 

 

output = cbind(output,TTI) 

latitude = c(latitude,coordinates[1]) 

longitude = c(longitude,coordinates[2]) 

print("done") 
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} 

 

# Write csv of 24h TTI with coordinates - User Input 

  

##### 

toMap <- data.frame(x=longitude,y=latitude,z=t(output)) 

write.csv(toMap,file=paste("D:\\Thesis\\App\\ProcessedData\\JulyE\\TTI_400SB\\400_coordinatesSB",".csv",sep="

")) 

##### 

 

}  
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11.2 R Code for Web Application Using R Shiny Package 
 

library(shiny) 

library(dplyr) 

library(leaflet) 

library(dbplyr) 

library(sp) 

library(gtools) 

library(rgdal) 

library(rsconnect) 

 

 

 

ui <- bootstrapPage({ 

   

  # Set the time range over which data is displayed 

  travel <- data.frame("time" = c("00:00", "23:58"), 

                       stringsAsFactors = F) 

  Time = seq(as.POSIXct("00:00", format = "%H:%M"), 

             as.POSIXct("23:58", format = "%H:%M"),"2 mins") 

   

  # Read and store TTI's, long's, and lat's in an accessible dataframe, lists 

   

  setwd("TTI") 

  files <- list.files(path=getwd(), pattern="*.csv", 

                      full.names=T, recursive=FALSE) 

  files = mixedsort(sort(files)) 

   

  longitude=list() 

  latitude = list() 

  TTI.names <- format(seq(as.Date("2017-07-01"), 

                          as.Date("2017-07-31"), 

                          by="days"), "%B %d, %Y") 

  TTI <- vector("list", length(TTI.names)) 

  names(TTI) <- TTI.names 

  names(TTI) = format(seq(as.Date("2017-07-01"), 

                          as.Date("2017-07-31"), 

                          by="days"), "%B %d, %Y") 

  i=1 

  for (file in files) { 

    TravelIndex = read.csv(file) 

    TTI[[i]] = TravelIndex[,4:723] 

    colnames(TTI[[i]]) = substr(Time,12,16) 

    latitude[[i]] = as.numeric(TravelIndex[,3]) 

    longitude[[i]] = as.numeric(TravelIndex[,2]) 

    i=i+1 

  } 

   

  }, 

   

  tags$body( 

    # Panel 1, 2-minute averages 

       leafletOutput('map', width = "100%", height = "400px"), 

       sliderInput(inputId="num", label="Choose a Time", 

                   value=as.POSIXct("11:30", format = "%H:%M"), 
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                   min=as.POSIXct(travel$time[1],format = "%H:%M"), 

                   max=as.POSIXct(travel$time[2],format = "%H:%M"), 

                   step = 120, round=FALSE, ticks=TRUE, 

                   animate = animationOptions(interval=3000), timeFormat = "%T", 

                   timezone = "-0000", width = "100%"), 

        selectInput("date", "Choose a Date", choices = format(seq(as.Date("2017-07-01"), 

                                                                  as.Date("2017-07-31"), 

                                                                  by="days"), "%B %d, %Y")), 

   # Panel 2, hourly averages 

       leafletOutput('hours',width = "80%", height = "300px"), 

       sliderInput(inputId="hour", label="Choose an hour of the day", 

                   value=as.POSIXct("08:00", format = "%H:%M"), 

                   min=as.POSIXct("00:00", format = "%H:%M"), 

                   max=as.POSIXct("23:00", format = "%H:%M"), 

                   step = 3600, round=FALSE, ticks=TRUE, 

                   animate = animationOptions(interval=3000), timeFormat = "%T", 

                   timezone = "-0000", width = "100%"), 

       selectInput("date2", "Choose a Date", choices = format(seq(as.Date("2017-07-01"), 

                                                                 as.Date("2017-07-31"), 

                                                                 by="days"), "%B %d, %Y")) 

)) 

 

server <- function(input,output) { 

   

  output$map <- renderLeaflet({ 

     

   # Plot map 

   leaflet() %>%  

     addProviderTiles(providers$CartoDB.DarkMatter) %>% 

      setView(lng = -79.48, lat = 43.75, zoom = 11) 

  }) 

   

  observe({ 

    ## For 2 min intervals 

    # Create Bubbles 

    day = match(input$date,names(TTI)) 

 

    data=data.frame(long=longitude[[day]] , lat=latitude[[day]], 

                    val=TTI[[day]][,match(substr((input$num),12,16),colnames(TTI[[day]]))]) 

     

     

    # Add circle reactives 

    pal = colorBin(c("green","yellow","orange","red"), data$val, bins = c(0,1,1.5,2,Inf)) 

     

    leafletProxy('map') %>% 

        clearMarkers() %>% clearControls() %>% 

         addCircleMarkers(data$long, data$lat, radius = 0, 

                         color = ifelse(data$val < 1, "green",  

                                        ifelse(data$val < 1.5, "yellow", 

                                               ifelse(data$val < 2, "orange","red"))), 

                         fillOpacity=0.5, popup=as.character(round(data$val,digits=1))) %>% 

        addLegend("bottomright", pal = pal, values = data$val, title = "Travel Time Index") 

  }) 

   

   

  # Hourly averages map 
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  output$hours <- renderLeaflet({ 

 

    shp <-readOGR(".", ifelse(as.numeric(substr(input$date2,6,7))>=10, 

                         paste("July",substr(input$date2,6,7),"_X",substr((input$hour), 

                                                                         12,13), 

                               "_",substr((input$hour),15,16),"_clip",sep=""), 

                         paste("July",substr(input$date2,7,7),"_X",substr((input$hour), 

                                                                         12,13), 

                               "_",substr((input$hour),15,16),"_clip",sep=""))) 

    pal2 = colorBin(c("green","yellow","orange","red"), shp$Value_Max, bins = c(0,1,1.5,2,Inf)) 

     

    # Plot second map 

    leaflet(shp) %>% 

      addProviderTiles(providers$Esri.WorldGrayCanvas) %>% 

      setView(lng = -79.4, lat = 43.6, zoom = 9) %>%  

      addPolygons(weight = 1, color = ~pal2(Value_Max)) %>% 

      addLegend("bottomright", pal = pal2, values = shp$Value_Max, title = "Travel Time Index") 

  }) 

   

} 

 

 

shinyApp(ui, server) 
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11.3 R Code for CSV -> Point Shapefiles 
 

library("readr") 

library("rgdal") 

 

#############################################################################################

####### Author: Anastassios Dardas 

# Function: set_wd_to_cur_dir 

#  

# Purpose: Sets working directory of script to file, returns the path 

# 

# Caution: if you have a network mapped drive, this may have issues 

#############################################################################################

####### 

set_wd_to_cur_dir <- function(){ 

  this_directory <- dirname(sys.frame(1)$ofile) 

  setwd(this_directory) 

  return(this_directory) 

} 

 

#############################################################################################

####### 

# Function: gen_leading_zeros 

# 

#  Purpose: Generate n number of leading zeros so that the output is a fixed size  

#  Parameters:  i    -> number 

#               size -> size of output string  

#  

#  Examples:  

#       Params: i = 1; size = 5; 

#       Output: "00001" 

#       Params: i = 23; size = 5; 

#       Output: "00023" 

#       Params: i = 1023; size = 10; 

#       Output: "0000001023" 

#############################################################################################

####### 

gen_leading_zeros <- function(i, size) paste(paste(rep("0", size-nchar(i)), collapse=""), i, sep="") 

 

#############################################################################################

####### 

# Function: rm_file_if_exist 

# 

#  Purpose: remove a file if it already exists at the specified path 

#  Parameters:  fn -> file path 

#############################################################################################

####### 

rm_file_if_exist <- function(fn)(if(file.exists(fn)){file.remove(fn)}) 

 

#############################################################################################

####### 

# Function: csv_to_ogr 

# 

#  Purpose: Read a csv and convert it to GIS readable data 

#  Parameters:  ifile_csv -> Input file csv to read 
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#               ifile_dir -> Input directory  

#               ofile_dir -> Output directory 

#############################################################################################

#######* 

csv_to_ogr <- function(ifile_csv, ifile_dir, ofile_dir, overwrite_ofile = TRUE){ 

  ofile_name <- gsub(".csv", "", ifile_csv) 

  ifile_path <- paste(ifile_dir, ifile_csv, sep = "") 

   

  ifile_df <- read_csv(ifile_path, col_types = cols(.default = "c"), col_names = FALSE, skip=1)[,c(2:27)] 

   

  num_col_names <- sapply(0:23, function(i) paste(gen_leading_zeros(i,2), "_00", sep="")) 

 

  colnames(ifile_df) <- c("lon","lat", num_col_names) 

   

  ifile_df <- data.frame(lapply(ifile_df, function(x) as.numeric(as.character(x))))   

   

  ifile_df$lon <- as.numeric(ifile_df$lon) 

  ifile_df$lat <- as.numeric(ifile_df$lat) 

   

  coordinates(ifile_df) <- ~lon+lat 

  proj4string(ifile_df) <- CRS("+init=epsg:4326") 

   

  # ofiles_ogr <- sapply(c(".shp", ".shx", ".dbf"), function(ext) paste(ofile_dir, ofile_name, ext, sep="")) 

  # rm_status  <- sapply(ofiles_ogr, function(fn) rm_file_if_exist(fn)) 

   

  odsn <- paste(ofile_dir, ofile_name, ".shp", sep="") 

   

  writeOGR(ifile_df, dsn = odsn, layer = ofile_name, driver = "ESRI Shapefile", overwrite_layer=TRUE) 

} 

 

this_dir <- set_wd_to_cur_dir() 

 

ifile_dir <- "Gisele/csv_july/" 

ofile_dir <- "Gisele/time_shapes/" 

 

ifiles_csv <- list.files(ifile_dir, "*.csv") 

create_status <- lapply(ifiles_csv, function(x) csv_to_ogr(x, ifile_dir, ofile_dir))  
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11.4 Python Code for ArcGIS-Generated Spatially-Interpolated Maps 
 

#############################################################################################

################# 

# Date: 4/2/2018 

# Author: Anastassios (Tasos) Dardas 

# Notes: This interpolates traffic flow of the highways in GTA / Hamilton region  

 # Requirements: Must have ArcPy via valid ArcGIS license  

 # May need to change the directory towards a relative  

#############################################################################################

################# 

import arcpy, glob 

arcpy.env.workspace = "C:\\Users\\ZeusBayes\\Desktop\\Processed_Shapefiles" # Change the workspace directory  

 

fields = ["X00_00", "X01_00", "X02_00", "X03_00", "X04_00", "X05_00", "X06_00", "X07_00", "X08_00", 

"X09_00", "X10_00", "X11_00", "X12_00", “X13_00", "X14_00", "X15_00", "X16_00", "X17_00", "X18_00", 

"X19_00", "X20_00", "X21_00", "X22_00", "X23_00"] # These fields may need to be changed 

 

road_shp        = "C:\\Users\\ZeusBayes\\Desktop\\Gisele\\essential_shapes\\dissolve_network.shp" # Change where 

the network shapefile is located  

list_point_shps = glob.glob("C:\\Users\\ZeusBayes\\Desktop\\Gisele\\time_shapes\\*.shp") # Change where the list 

of point shapes from the csv files are created  

 

i = 0 

for point_shp in list_point_shps: 

 point_shp = str(point_shp.replace("\\", "/")) 

 refine_shp = point_shp[46:len(point_shp)-4] 

 print(point_shp) 

 for field in fields:  

  temp_layer = str(refine_shp + "_" + field) 

arcpy.EmpiricalBayesianKriging_ga(in_features = point_shp, z_field = field, out_ga_layer =   

temp_layer, out_raster = "", cell_size = "", transformation_type = "NONE", max_local_points = 

"", overlap_factor = "", number_semivariograms = "", search_neighborhood = "", output_type = 

"PREDICTION", quantile_value = "", threshold_type = "", probability_threshold = "", 

semivariogram_model_type = "LINEAR") 

arcpy.GALayerToContour_ga(str(refine_shp + "_" + field), contour_type = SAME_AS_LAYER", 

out_feature_class = str(refine_shp +  "_" + field + ".shp"), contour_quality = "DRAFT") 

  arcpy.env.workspace = "C:\\Users\\ZeusBayes\\Desktop\\Processed_Clips_July" 

arcpy.Clip_analysis(str(refine_shp + "_" + field + ".shp"), clip_features = road_shp, 

out_feature_class = str(refine_shp + "_" + field + "_clip.shp")) 

  print(i) 

  i += 1 
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